Tabella di massima riduzione di un sistema di vettori applicati.

	$\vec{R} = \vec{0}, \vec{M}_O = \vec{0}$	zero
<i>I</i> = 0	, 0,	coppia di momento \vec{M}_O
	$\vec{R} \neq \vec{0}, \vec{M}_O \neq \vec{0}$	vettore \vec{R} applicato in un punto
		qualsiasi dell'asse centrale
<i>I</i> ≠ 0	$\vec{R} \neq \vec{0}, \vec{M}_O \neq \vec{0}$	vettore \vec{R} applicato in un qualsiasi
		polo O + coppia di momento \vec{M}_O

Esericizio 1 (da Muracchini, Seccia, Ruggeri, ex. 1.3) Dato il sistema di vettori

$$ec{v}_1 = (\hat{i}_1 + \hat{i}_2), \qquad \vec{v}_2 = (3\hat{i}_1 - 4\hat{i}_2), \qquad \vec{v}_3 = (-2\hat{i}_1 + 6\hat{i}_2)$$
 $A_1 = (5, -2, 0), \qquad A_2 = (3, 0, 0), \qquad A_3 = (1, -3)$

Determinare

- Risultante e momento risultante rispetto all'origine.
- Invariante scalare.
- Equazione cartesiana dell'asse centrale.
- Un sistema equivalente.

R.
$$\vec{R} = 2\hat{i}_1 + 3\hat{i}_2$$
. $\vec{M}_O = -5\hat{i}_3$. $y = \frac{3}{2}x + \frac{5}{2}$

Esericizio 2 Dato il sistema di vettori piani e paralleli

$$ec{v}_1 = (0, 1, 0), \qquad ec{v}_2 = (0, -v, 0), \ A_1 = (1, 2, 0), \qquad A_2 = (2, 1, 0)$$

Determinare

- Risultante e momento risultante rispetto all'origine.
- Invariante scalare.
- Equazione cartesiana dell'asse centrale.
- Valore del momento rispetto ad un punto dell'asse centrale.
- Il centro.
- Un sistema equivalente.

Verificare poi che il centro si trova sulla congiungente A_1 con A_2 .

R.
$$\vec{R} = (1 - v)\hat{i}_2$$
. $\vec{M}_O = (1 - 2v)\hat{i}_3$. $I = 0$. $x = \frac{1 - 2v}{1 - v}$. 0. $C = \left(\frac{1 - 2v}{1 - v}, \frac{2 - v}{1 - v}\right)$

Dato la coppia

$$\vec{v} = v(\cos(\theta)\hat{i}_1 + \sin(\theta)\hat{i}_2), \qquad \vec{u} = u(-\cos(\theta)\hat{i}_1 - \sin(\theta)\hat{i}_2), A_v = (a, 0, 0), \qquad A_u = (-a, 0, 0),$$

Determinare

- Risultante e momento risultante rispetto all'origine.
- Equazione cartesiana dell'asse centrale

R.
$$\vec{R} = (v - u)(\cos(\theta)\hat{i}_1 + \sin(\theta)\hat{i}_2)$$
. $\vec{M}_O = a(v + u)\sin(\theta)\hat{i}_3$. $y = \tan(\theta)\left(x - a\frac{v+u}{v-u}\right)$

Provare che due vettori applicati sono equivalenti se hanno lo stesso vettore libero e la stessa retta di appicazione.

Mostrare che un sistema di due vettori applicati concordi e paralleli è equivalente ad un unico vettore che ha come risultante la somma dei due vettori e come punto di applicazione un punto che giace sulla retta che congiunge A_1 ed A_2 nell'intervallo limitato da A_1 ed A_2 stessi.

Per il sistema di vettori paralleli $\vec{v}_k = (0, 0, k)$ applicati in $A_k = (0, k, 0), k = 1..N$, determinare

- L'equazione dell'asse centrale.
- Il centro.

R. l'asse è la retta di equazione $y = \frac{2N+1}{3}$. $C = (0, \frac{2N+1}{3}, 0)$

Dato il sistema di vettori

$$\begin{split} \vec{v}_1 &= (\alpha \hat{i}_1 + \hat{i}_2), \qquad \vec{v}_2 = (\alpha \hat{i}_2 + \hat{i}_3), \qquad \vec{v}_3 = (\hat{i}_1 + \hat{i}_2) \\ A_1 &= (1, \alpha, 0), \qquad A_2 = (\alpha, 0, 1), \qquad A_3 = (0, 0, k\alpha), \end{split}$$

determinare il valore dei parametri α e k affincè l=-1 e l'asse centrale passi per il punto $P=\left(0,\frac{1}{3},0\right)$.

R.
$$\alpha = -2, k = \frac{5}{12}$$

Determinare il centro del seguente sistema di vettori

$$\begin{split} \vec{v}_1 &= (1,\frac{1}{2},\frac{1}{3}), \qquad \vec{v}_2 = (2,1,\frac{2}{3}), \qquad \vec{v}_3 = (3,\frac{3}{2},1) \\ A_1 &= (1,0,0), \qquad A_2 = (0,1,0), \qquad A_3 = (0,0,1), \end{split}$$

R.
$$C = \left(\frac{1}{6}, \frac{1}{3}, \frac{1}{2}\right)$$