Quiz PS 25.06.2020 sez. A-L

1. Domanda 1

Sia X una variabile casuale distribuita normalmente con media μ e varianza σ^2 e sia Y = 3X + 2. Sapendo che P[Y > 2] = 0.2327, determinare il rapporto tra la media μ di X e la deviazione standard $\sigma \operatorname{di} X$.

- (a) +0.73.
- (b) -0.73. \checkmark
- (c) +0.41.
- (d) -0.41.

2. Domanda 2

Calcolare il limite inferiore per la probabilità che una variabile casuale X assuma valori che si discostano dalla media per meno di 5 volte la deviazione standard.

- (c) non è determinabile con i dati del problema.
- (d) $\frac{35}{36}$

3. Domanda 3

Sia X una variabile casuale uniformemente distribuita sull'intervallo $\left[\frac{2a+1}{3}, \frac{2}{3}a+3\right]$. Calcolare var[X].

- (a) $\frac{8}{3}$.
- (b) $\frac{1}{1}$ (c) $\frac{16}{27}$ \checkmark (d) $\frac{3}{4}$

4. Domanda 4

Sia $X_1, X_2...X_n$ un campione casuale di ampiezza n estratto da una popolazione con densità di probabilità

$$f(x) = \begin{cases} \frac{6}{\theta^2} x (1 - \frac{x}{\theta}), & \text{se } x \in (0, \theta) \\ 0, & \text{altrove} \end{cases}$$

Determinare uno stimatore T di θ con il metodo dei momenti.

- (a) $T = 2\overline{X}_n \checkmark$ (b) $T = \overline{X}_n$ (c) $T = \frac{1}{2}\overline{X}_n$ (d) $T = \frac{2}{3}\overline{X}_n$

5. Domanda 5

Un commerciante di fiori acquista da un produttore 10 pacchi di rose e sa che la probabilità che un pacco contenga rose che appassiranno il giorno successivo è pari al 3%. Calcolare la probabilità che il giorno successivo vi sia almeno un pacco di rose avvizzite.

- (a) 26.25%. \checkmark
- (b) 3%.
- (c) 30%.
- (d) 8.27%.